Closing Tues: 3.10

Closing *Thurs*: 4.1(1) and 4.1(2)

3.10 Linear Approx. (continued)

Recall:

Given a point (x_0, y_0) and a curve. The tangent line at the point can be thought of as a linear approximation:

$$y = m(x - x_0) + y_0$$

where $m = \frac{dy}{dx}$ at the point.

Entry Task:

Using tangent line approximation to estimate the value of $\sqrt[3]{8.5}$.

Note the function is $f(x) = \sqrt[3]{x}$. Use the "nice" nearby value of x.

$$f(x) = \sqrt[3]{x} = x^{3}$$

$$f'(x) = \frac{1}{3} x^{-2/3} = \frac{1}{3 x^{2/3}}$$
At $x = 8$, $f(8) = \sqrt[3]{8} = 2$

$$f'(8) = \frac{1}{3(4)^{2/3}} = \frac{1}{3 \cdot 4} = \frac{1}{12}$$

THUS)
$$3\sqrt{x} \approx \frac{1}{12}(x-8)+2$$
 for $x\approx 8$

$$\Rightarrow \sqrt[3]{8.5} \approx \frac{1}{12} (8.5 - 8) + 2$$

$$\frac{1}{12} (8.5 - 8) + 2 = 2.0416$$

$$y = \frac{1}{12}(x-\epsilon)+2 \Rightarrow y-2 = \frac{1}{12}(x-\epsilon)$$

LET $dy = y-7$
 $dx = x-2$
 $dy = \frac{1}{12}dx$

Example (from HW):

A cone with height *h* and base radius *r* has total surface area:

$$S = \pi r^2 + \pi r \sqrt{r^2 + h^2}$$

You start with h = 8 and r = 6, and you want to change the dimensions in such a way that the total *surface* area remains constant.

Suppose the height increases by 26/100.

In this problem, use tangent line approximation to estimate the new value of r so that the new cone has the same total surface area.

JE WANT TO APPROXIMATE TO

IF IN CHANGES!

$$\Gamma = \frac{1}{2\pi} \left(\frac{1}{4\pi} + \frac{1}{2\pi} \right) + \frac{1}{2\pi} \left(\frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} \right) + \frac{1}{2\pi} \left(\frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} \right) + \frac{1}{2\pi} \left(\frac{1}{2\pi} + \frac{1}{$$

Some Homework Hints:

Problem 10: Suppose that *a* and *b* are pieces of metal which are hinged at *C*.

By the ``law of sines," you always have:

$$\frac{b}{a} = \frac{\sin(B)}{\sin(A)}$$

At first: angle A is $\pi/4$ radians= 45° and angle B is $\pi/3$ radians = 60° .

You then widen A to 46° , without changing the sides a and b.

The question asks you to use the linear approximation to estimate the new angle B.

PROOF

$$\frac{A}{A} = \frac{h}{b} \quad \text{AND} \quad \text{Sin}(B) = \frac{h}{a}$$

$$\Rightarrow h = b \sin(A) \quad \text{And} \quad h = a \sin(B)$$

$$\Rightarrow b = \sin(A) = a \sin(B) \Rightarrow \frac{h}{a} = \frac{\sin(B)}{\sin(A)}$$

4.1: Critical Points and Absolute Max/Min

Given y = f(x). The first questions we always ask:

- What is the domain?
 (What inputs are allowed?)
- 2. What are the "critical numbers"? A **critical number** is a number x = a that is <u>in the domain</u> and either
 - (a) f'(a) = 0, or
 - (b) f'(a) does not exist.

Example (from homework):

$$y = x^3 + 3x^2 - 72x$$

- a) What is the domain? ALL REAL # 5
 - C domain.
- b) What are the critical numbers?

$$y' = 3x^{2} + 6x - 72 = 0$$

 $3(x^{2} + 2x - 24) = 0$
 $3(x + 6)(x - 4) = 0$
 $x = -6$
 $x = 4$
Numbers

AS108)

Example:

$$f(x) = 4x + \frac{1}{x} = 4x + x^{-1}$$

- a) What is the domain? $\frac{x}{x \neq 0}$
- b) What are the critical numbers?

$$4 - \frac{1}{x^2} \stackrel{?}{=} 0$$
 $4 \times^2 - 1 = 0$
 $\times^2 = \frac{1}{4}$
 $\times = \pm \frac{1}{2}$

Example:

DOD LOUT

$$g(x) = 3x - x^{1/3} = 3 \times -\sqrt[3]{x}$$

- a) What is the domain? ALL REAL NUNDELT
- b) What are the critical numbers?

$$g'(x) = 3 - \frac{1}{3}x^{-2/3} = 3 - \frac{1}{3x^{2/3}}$$

$$3 - \frac{1}{3x^{4/3}} \stackrel{?}{=} 0$$

$$9 \times \frac{4}{3} - 1 = 0$$

$$\times = \frac{1}{4} \times \frac{4}{27} = \frac{1}{27} \times \frac{1}{4} \times \frac{1}{$$

Absolute Max/Min

The **absolute max** (or **global** max) is the highest *y*-value on the interval. The **absolute min** (or **global** min) is the lowest *y*-value on the interval.

Procedure to find absolute max/min:

- 1. Find critical numbers.
- Plug endpoints and critical numbers into the function.

Big, key, awesome observation:

(Extreme Value Theorem)
The absolute max/min always occur at critical numbers or endpoints!

Example (like HW):

Find the abs. max and min of $f(x) = x^3 + 3x^2$ on [-1,2].

$$f'(x) = 3x^2 + 6x = 0$$

$$3x(x+1) = 0$$

$$x = 0$$

$$x = 0$$
ONLY CAIRCA # IN THE

$$f(-1) = (-1)^{2} + 3(-1)^{2} = -1 + 3 = 2$$

$$f(0) = 0$$

$$f(1) = (2)^{2} + 3(1)^{2} = 8 + 12 = 20$$

ABS
$$max = 20$$
ABS. $m_1 = 0$

Small Note:

The **value** of a function, y = f(x), is the output y-value. A question asking for the absolute max of a function is asking for the **y-value**. (The x-value is the location where the max occurs)

Example:

Find the abs. max and min of $f(x) = x \ln(x)$ on [1, e].

$$f'(x) = x \cdot \frac{1}{x} + \ln(x) = 1 + \ln(x)$$

 $1 + \ln(x) \stackrel{?}{=} 0$
 $\ln(x) = -1$
 $x = e^{-1} \approx 0.367379$
NOT IN GIVEN DOLAN!

$$f(1) = 1 \cdot \ln(1) = 0$$

 $f(e) = e \ln(e) = e$

Example:

Find the abs. max and min of

$$f(x) = x\sqrt{1-x} \text{ on } [-1,1].$$

$$f'(x) = \sqrt{1-x} + x = 0$$

$$1-x - \frac{1}{2}x = 0$$

$$1-3(x = 0)$$

$$1 = \frac{3}{2}x$$

$$x = \frac{1}{3}$$

$$x = \frac{1}{3$$

$$f(-1) = (-1)\sqrt{1-(-1)} = -\sqrt{2} \approx -1.414$$

$$f(3) = \frac{1}{3}\sqrt{5} = \frac{1}{3}\sqrt{5}$$

$$= \frac{2}{3\sqrt{5}} = \frac{2}{3}\sqrt{5}$$

$$\approx 0.3849$$

$$f(1) = (1)\sqrt{1-1} = 0$$
ABS, MAX = $\frac{2}{3\sqrt{3}}$
ABS MIN = $-\sqrt{2}$

